一粒云手册:一粒云存储扩容与用户空间分配

目录

第一章 CentOS系统添加磁盘存储

1.1. 查看系统磁盘状况

1.2. 给磁盘分区

1.3. 格式化磁盘分区

1.4. 挂载新磁盘到/opt目录下

1.5. 设置开机自动挂载

1.6. 重启服务器,验证是否开机自动挂载磁盘

第二章 一粒云存储配置

2.1. 存储配置文件说明

2.2. 重启服务

2.3. 测试

前言:本文介绍如何在系统添加新的存储并扩容到一粒云

一粒云服务器系统登陆账号:root密码yliyun!@#$

第一章 CentOS系统添加磁盘存储

一.1. 查看系统磁盘状况

前提是先将磁盘或者外接存储连接到服务器上

登陆服务器,在命令行终端输入命令,列出系统上所有可用磁盘设备信息

lsblk

从下图可以看出sdb为新增20G的空闲磁盘,并未分区

一.2. 给磁盘分区(手动磁盘分区,linux 小白谨慎操作哦)

1)进入parted分区工具(sdb 是视实际情况的盘符编号)

parted /dev/sdb

2)设置分区类型为gpt

mklabel gpt

3)如果有提示yes/no,那么要yes确认

yes

4)扩展分区extended ,主分区primary ,并使用整个硬盘

mkpart extended 0% 100%

5)查看一下

print

6)退出工具

quit

一.3. 格式化磁盘分区

格式化为xfs分区(因为给sdb只分了1个区,所以分区名称为sdb1)

mkfs.xfs /dev/sdb1

如果提示已有其他文件系统创建在此分区加-f参数 mkfs.xfs -f /dev/sdb1

一.4. 挂载新磁盘到/opt目录下

mount /dev/sdb1 /opt

或者mount -t xfs /dev/sdb1 /opt

如果挂载新磁盘到/opt目录之前,有文件存放在/opt目录下那将看不到之前的文件了,需要卸载磁盘后,先将之前/opt目录下的文件移动到其他位置,再挂载。卸载磁盘命令为:

 umount /dev/sdb1

一.5. 设置开机自动挂载

1)查看磁盘信息,确定已经成功挂载到/opt目录下

lsblk -f

从下图可以看出sdb1已经挂载到/opt目录下了

上图中每一列的含义:

NAME:磁盘名称和磁盘分区的名称

FSTYPE:文件系统类型

LABEL UUID:磁盘的UUID

MOUNTPOINT:磁盘的挂载点

2)编辑配置文件

vi /etc/fstab

在最后一行填写/dev/sdb1  /opt  xfs  defaults  0  0

编辑完毕后按Esc键,输入:wq回车,保存退出

如下图

谨慎操作,上图中任意信息填错将会导致系统无法正常开机

一.6. 重启服务器,验证是否开机自动挂载磁盘

reboot

如果导致无法正常开机,基本都是第5步骤信息填写错误:

1、开机后按提示输入root密码;

2、mount -o remount,rw / #使根目录下的文件可主读写

3、vi /etc/fstab #修改错误的地方


第二章 一粒云存储配置

如果系统已经挂载好了新存储,仅需要添加到一粒云存储中

Mount 挂载新磁盘到文件系统(参考)

mount /dev/sdb /yliyun_data

二.1. 存储配置文件说明

一粒云存储配置文件有两个,当修改时两个都需要修改

/opt/yliyun/fdfs/etc/storage.conf

/opt/yliyun/fdfs/etc/mod_fastdfs.conf

  • 配置中store_path_count=1参数默认1,如果新增1条存储,那需要改为2,以此类推。
  • 配置中store_path0=/opt/yliyun/data/g1_data0 为云盘默认的存储位置,可修改。
  • 如果要更改默认存储路径,修改store_path0=/opt/yliyun/data/g1_data0为store_path0=‘新的路径’
  • 如果要新增存储,在store_path0的下一行添加store_path1=’你的存储挂载路径’,以此类推。

默认新系统做法

(没有数据的情况下,直接修改地址为挂载路径,其它配置不变):

store_path0=/yliyun_data

二.2. 重启服务

/opt/yliyun/bin/fdfs stop

/opt/yliyun/bin/fdfs start

/opt/yliyun/bin/nginx restart

二.3. 测试

  • 等待几秒后,查看云盘【系统概览】内的磁盘大小
  • 上传、下载、预览多个文件是否成

手动分配用户空间,请进入到管理后台按下图操作

在三台 CentOS 7 虚拟机上使用 Docker 安装 Elasticsearch 8.17 的详细教程

概述

本教程将带您通过 Docker 在三台 CentOS 7 虚拟机上安装并配置 Elasticsearch 8.17。Elasticsearch 是一个开源的分布式搜索引擎,通常用于日志和数据分析。在这个教程中,您将学习如何:

  1. 在三台 CentOS 7 虚拟机上安装 Docker。
  2. 使用 Docker 容器安装 Elasticsearch。
  3. 配置并启动 Elasticsearch 集群。

前提条件

  1. 三台 CentOS 7 虚拟机。
  2. 每台虚拟机的网络能够相互访问。
  3. 每台虚拟机至少 4GB 内存,2 个 CPU 核心。
  4. 基本的 Linux 操作系统操作知识。

步骤 1:在三台 CentOS 7 虚拟机上安装 Docker

  1. 更新系统 在每台虚拟机上执行以下命令,确保系统是最新的: sudo yum update -y
  2. 安装 Docker 运行以下命令以安装 Docker: sudo yum install -y yum-utils device-mapper-persistent-data lvm2 添加 Docker 官方的仓库: sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo 安装 Docker CE(Community Edition): sudo yum install -y docker-ce docker-ce-cli containerd.io
  3. 启动 Docker 服务 启动 Docker 服务,并设置为开机启动: sudo systemctl start docker sudo systemctl enable docker
  4. 验证 Docker 安装 使用以下命令验证 Docker 是否安装成功: sudo docker --version 如果返回 Docker 版本信息,说明 Docker 安装成功。

步骤 2:在三台虚拟机上安装 Elasticsearch Docker 镜像

  1. 拉取 Elasticsearch 镜像 在每台虚拟机上运行以下命令拉取 Elasticsearch 8.17 的 Docker 镜像: sudo docker pull docker.elastic.co/elasticsearch/elasticsearch:8.17.0 这将从 Docker 官方仓库下载 Elasticsearch 镜像。
  2. 确认 Elasticsearch 镜像已下载 使用以下命令确认 Elasticsearch 镜像已成功下载: sudo docker images 输出应该显示 elasticsearch:8.17.0 镜像。

步骤 3:配置 Elasticsearch 集群

为了使三台虚拟机上的 Elasticsearch 实例成为一个集群,我们需要为每台机器配置不同的节点名称、主机地址以及集群名称。

配置 Elasticsearch 环境变量

  1. 创建 Docker 配置文件 在每台虚拟机上,为 Elasticsearch 创建一个名为 elasticsearch.yml 的配置文件: sudo mkdir -p /etc/elasticsearch sudo touch /etc/elasticsearch/elasticsearch.yml
  2. 配置节点设置 编辑 elasticsearch.yml 文件,配置每个节点的 IP 地址和集群名称。以下是一个配置示例: cluster.name: "my-cluster" node.name: "node-1" # 每台机器的节点名不同 network.host: 0.0.0.0 discovery.seed_hosts: ["<VM-1-IP>:9300", "<VM-2-IP>:9300", "<VM-3-IP>:9300"] cluster.initial_master_nodes: ["node-1", "node-2", "node-3"] 在每台虚拟机上,分别将 node.name 改为 node-1node-2node-3,并将 discovery.seed_hosts 配置为集群中其他两台机器的 IP 地址。 注意:<VM-1-IP><VM-2-IP><VM-3-IP> 需要替换为实际的虚拟机 IP 地址。

步骤 4:启动 Elasticsearch 集群

  1. 启动容器 在每台虚拟机上使用以下命令启动 Elasticsearch 容器: sudo docker run -d \ --name elasticsearch-node-1 \ --net host \ -e "discovery.type=single-node" \ -e "ES_JAVA_OPTS=-Xms2g -Xmx2g" \ -e "node.name=node-1" \ -e "cluster.name=my-cluster" \ -e "network.host=0.0.0.0" \ -e "discovery.seed_hosts=<VM-2-IP>:9300,<VM-3-IP>:9300" \ -e "cluster.initial_master_nodes=node-1,node-2,node-3" \ docker.elastic.co/elasticsearch/elasticsearch:8.17.0 其中:
    • --name 指定容器的名称。
    • -e "discovery.type=single-node" 用于非集群模式(仅测试时使用)。生产环境中不要设置此选项。
    • -e "ES_JAVA_OPTS=-Xms2g -Xmx2g" 设置 Elasticsearch 的 JVM 堆内存为 2GB。
    • -e "node.name=node-1" 指定节点名称。
    • -e "discovery.seed_hosts" 配置集群中其他节点的 IP 地址。
    将每台虚拟机的命令中的 node-1 修改为 node-2node-3,并相应地调整 IP 地址。
  2. 检查 Elasticsearch 容器状态 使用以下命令检查容器是否成功启动: sudo docker ps 如果容器在运行,它会显示类似以下内容: CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 123456789abc docker.elastic.co/elasticsearch/elasticsearch "/bin/bash -c 'exec ... " 5 minutes ago Up 5 minutes elasticsearch-node-1
  3. 查看 Elasticsearch 日志 如果容器启动出现问题,可以查看 Elasticsearch 容器的日志: sudo docker logs elasticsearch-node-1

步骤 5:验证 Elasticsearch 集群

  1. 访问 Elasticsearch REST API 在其中一台虚拟机上,您可以使用 curl 来检查 Elasticsearch 是否正常运行: curl -X GET "localhost:9200/" 如果 Elasticsearch 正常启动,您将看到类似以下的响应: { "name" : "node-1", "cluster_name" : "my-cluster", "cluster_uuid" : "abc123xyz", "version" : { "number" : "8.17.0", "build_flavor" : "default", "build_type" : "docker", "build_hash" : "abcdef1234567890", "build_date" : "2023-05-10T10:39:57.596481991Z", "lucene_version" : "9.4.2", "minimum_wire_compatibility_version" : "7.10.0", "minimum_index_compatibility_version" : "7.10.0" } }
  2. 验证集群状态 使用以下命令验证 Elasticsearch 集群的状态: curl -X GET "localhost:9200/_cluster/health?pretty=true" 如果集群状态为 green,表示集群正常工作。

步骤 6:集群管理

  1. 增加节点 如果需要添加更多节点,可以使用以下命令在其他虚拟机上启动新的容器,确保将 discovery.seed_hostscluster.initial_master_nodes 配置为当前集群中的所有节点。
  2. 停止和删除容器 要停止并删除容器,可以使用以下命令: sudo docker stop elasticsearch-node-1 sudo docker rm elasticsearch-node-1

结语

通过本教程,您已经成功在三台 CentOS 7 虚拟机上通过 Docker 安装并配置了一个 Elasticsearch 8.17 集群。现在您可以根据自己的需求调整 Elasticsearch 配置,执行查询,或将其与其他服务集成。

关注一粒云,使用一粒云kbox,或者一粒云kdocs 建立一下结构文件夹结构管理好es8机群部署:


elasticsearch-setup/

├── docs/ # 存放安装文档及操作手册
│ ├── README.md # 项目概述、安装流程
│ ├── es-installation-guide.md # Elasticsearch 安装教程
│ ├── es-cluster-configuration.md # Elasticsearch 集群配置教程
│ ├── es-troubleshooting.md # 常见问题和解决方案
│ └── es-security-setup.md # 安全配置教程(如启用 SSL/TLS、认证)

├── scripts/ # 存放所有相关的脚本文件
│ ├── install-docker.sh # 在 CentOS 7 上安装 Docker 的脚本
│ ├── start-es-container.sh # 启动 Elasticsearch 容器的脚本
│ ├── setup-es-cluster.sh # 配置 Elasticsearch 集群的脚本
│ ├── stop-es-container.sh # 停止 Elasticsearch 容器的脚本
│ └── cleanup.sh # 清理不再需要的容器和镜像的脚本

├── config/ # 存放配置文件
│ ├── elasticsearch.yml # Elasticsearch 配置文件
│ └── docker-compose.yml # 如果使用 Docker Compose 部署,存放该文件

├── logs/ # 存放日志文件(安装过程、运行时日志)
│ ├── install-log.txt # 安装过程中生成的日志文件
│ └── es-container-logs/ # Elasticsearch 容器运行时的日志
│ ├── elasticsearch-node-1.log
│ ├── elasticsearch-node-2.log
│ └── elasticsearch-node-3.log

└── backups/ # 存放数据备份、容器配置等重要文件
├── es-backup-2025-06-04.tar.gz # Elasticsearch 数据备份
└── config-backup-2025-06-04.tar.gz # 配置文件备份

解锁企业智慧:构建高效知识管理系统的终极指南

在数字化信息时代,企业知识管理系统的构建已成为提升竞争力的关键。随着信息量爆炸式增长,企业面临“信息过载”问题,知识点孤立和冗余内容常导致工作效率下降。因此,企业需要建立系统化的知识管理体系,实现知识共享、显性化、体系化与再生化。

知识共享化:打破信息壁垒

隐性知识大多存在于员工头脑中,难以规范化。通过自上而下的管理传递、员工分享激励和横向沟通,企业可有效推动知识共享,避免“沉默的螺旋”和“信息茧房”现象。管理者需通过激励机制、匿名反馈和互动平台,激发员工的分享欲望,营造开放的学习环境。

知识显性化:知识内容清晰易懂

将隐性知识转化为文档、视频等易于理解和传播的形式。提高知识显性化水平,需要使用清晰的语言、结构化内容与操作指南,避免“知识的诅咒”,确保员工能够快速学习与应用。

知识体系化:建立有序知识目录

通过明确的知识分类与目录结构,解决信息碎片化和“信息过载”问题。构建企业知识目录时,需根据业务角色、职能划分和应用场景细分内容,形成关联明确、层次清晰的知识网络,提升员工的信息检索与学习效率。

知识再生化:激发持续创新

知识的应用与再创造是企业竞争力的源泉。通过精准检索、实践操作和创新激励机制,企业可引导员工不断学习、应用与改进已有知识,实现知识资产的持续增值。

要实现企业知识管理的四个阶段:知识显性化、知识共享化、知识体系化和知识再生化,推荐以下工具组合,涵盖文档管理、协作平台和学习系统:


1. 知识显性化(Externalization)工具

将隐性知识转化为文档、视频等形式:

  • 文档与内容管理系统(DMS):如 Microsoft SharePoint、Google Workspace、Notion
  • 视频与演示工具:如 Loom、Camtasia、PowerPoint、Prezi
  • 流程与知识捕获工具:如 Miro(思维导图)、Lucidchart(流程图)

2. 知识共享化(Socialization)工具

实现跨团队知识共享与互动:

  • 企业社交平台与协作工具:如 Microsoft Teams、Slack、Workplace by Meta
  • 知识问答与社区平台:如 Confluence、Yammer、Discourse
  • 内部交流与公告平台:如 Trello、Monday.com(任务与信息公告)

3. 知识体系化(Combination)工具

组织知识、构建有序知识库:

  • 知识库与文档管理系统:如 Atlassian Confluence、Notion、Guru
  • 搜索与文档索引工具:如 Elasticsearch、Google Cloud Search、SharePoint Search
  • 内容管理与版本控制系统:如 GitHub(适用于技术文档和代码管理)

4. 知识再生化(Internalization)工具

学习平台与持续培训:

  • 学习管理系统(LMS):如 Moodle、TalentLMS、SAP SuccessFactors
  • 在线课程与内容平台:如 Udemy for Business、Coursera for Teams
  • 反馈与测评系统:如 SurveyMonkey、Typeform、Google Forms

集成与自动化工具(增强整体效率)

  • 自动化工具:如 Zapier、Make(Integromat),将不同系统的数据与任务自动化。
  • 企业资源规划(ERP)系统:如 SAP ERP、Oracle NetSuite,用于集成广泛业务功能。

为什么需要企业知识目录?

在信息化时代,知识型企业面临的一个重大挑战是“信息过载”,即员工面对大量未整理的文档和数据,难以有效筛选和运用。这种现象常导致学习低效和决策失误。因此,构建一个清晰的企业知识目录至关重要。以下是企业主如何建设企业知识目录的详细指南。

一、为什么需要企业知识目录?

1. 避免信息过载

  • 减少干扰:有效的知识目录能过滤冗余信息,帮助员工专注于有用数据。
  • 增强思维连接:知识目录能帮助员工更好地理解和记忆新知识,形成清晰的思维框架。

2. 提高学习与决策效率

  • 顺藤摸瓜:学习内容按照逻辑结构层层展开,便于知识迁移与应用。
  • 快速定位信息:通过结构化目录,员工能快速找到所需资料,避免重复查找。

二、构建企业知识目录的核心步骤

1. 知识梳理与分类

  • 领域划分:将企业知识按适用角色、业务职能、项目阶段等维度划分。
  • 主题细化:细分大类,形成多个子类别。例如,”政策文件”可细分为”申报要求”、”评审标准”等。

2. 知识点关联与结构化

  • 建立层级目录
  • 从“是什么”开始,再到“为什么”、“如何做”等层次,形成完整的知识链。
  • 确保目录逻辑清晰,避免孤立的知识点。
  • 交叉关联
  • 创建知识点之间的引用与链接,例如将“项目管理”与“风险控制”相关内容相互引用。

3. 知识标签与检索优化

  • 标签体系设计
  • 基于文档的主题、日期、作者等元数据生成标签,便于检索与筛选。
  • 搜索引擎集成
  • 引入语义搜索和智能推荐,确保快速、精准的信息定位。

三、企业网盘知识目录架构设计示例

以下是一个适用于企业网盘的知识目录架构设计示例:

根目录:企业知识库

1. 公司政策与规章制度

  • 人事政策
  • 财务管理
  • 数据安全与合规

2. 项目管理与运营

  • 项目文档
  • 项目计划
  • 项目报告
  • 风险管理
  • 运营流程与标准

3. 产品与服务支持

  • 产品手册
  • 技术支持文档
  • 常见问题与解决方案

4. 客户与市场资料

  • 客户档案
  • 市场调研报告
  • 销售数据与分析

5. 培训与学习资源

  • 内部培训材料
  • 员工技能发展课程
  • 行业学习资料

权限与安全控制示例:

  • 权限管理:基于用户角色分配访问权限。
  • 数据备份与恢复:设置自动备份,确保数据安全。
  • 使用审计与日志记录:监控访问行为,确保合规性。

通过构建系统化的企业知识目录,企业主不仅能有效应对“信息过载”挑战,还能激发员工的学习主动性,提升工作效率与决策质量,实现知识资产的最大化利用。